Detector R&D for g-2

David Hertzog* University of Washington

- Context: The new Muon g-2 Experiment
 - ♦ What you need to know
- Lead Fluoride Crystals
- Silicon Photo-Multipliers
- SLAC Test Beam

*Team: UW group: P. Alonzi, A. Fienberg, P. Kammel, J. Kaspar, M. Smith, T. VanWechel, K. Wall, B. Kiburg (now FNAL); P. Winter (now ANL); and K. Yai (Osaka);

CONTEXT

Some things you need to know to follow this talk better

The statistically limited g-2 measurement is 3.6σ from the Standard Model. Now what?

"Do the measurement better ..."

need More Muons
need Reduced Systematics
Implications for detectors

E989 completed CD-1; 38 Institutions, > 150 members; Start end of 2016

How is data obtained?

- Bunch of μ⁺ (up to 10,000) injected into the storage ring
 - Muon lifetime: $\gamma \tau = 64 \mu s$
 - ◆ Decay e⁺ range: <u>0 3.1 GeV</u>
 - Strike one of the 24 calorimeters
- 2. Observe events for ~700 μs
 - Record continuous waveforms
 - 12-bit resolution @ 500 MHz
 - 1296 channels → 680 MB per fill
 - Transfer, sort, pulse-find, pre-analyze during time between fills
- Repeat sequence at 12 Hz
 - 8.1 GB/s transferred to GPU farm*
- Run continuously for more than a year
- Vary conditions for systematics

24 "finite" detector stations define acceptance

What you "want" is different from what you get

- Desire: Electrons with E > 1.8 GeV (12%)
- You get: Everything that hits detectors
 - ♦ Modulated by g-2: 4.3 µs period; Amp is A(E)
 - ◆ Modulated by Fast Rotation of incoming beam bunch

High rate exacerbates pileup & gain stability issues

149 ns cyclotron frequency exaggerates actual rate on detectors

Pileup scales at $\langle R_{wiggle+FR} \rangle^2 \Delta t$, where Δt is the resolving time). For Δt = 6 ns, we can expect an unresolved pileup fraction after 30 μ s when physics fit starts of ~0.9%

>2 MHz per calo minimal

Note: Rates are estimated, but could be much higher as FNAL is working on injection efficiency improvements.

What drives the detector choice?

- Compact based on fixed space
- Non-magnetic to avoid field perturbations
- Resolution not too critical for $\delta\omega_a$
 - Useful for pileup, gain monitoring, shower partitioning and low thresholds
- Gain stability depends on electronics and calibration system
- Pileup depends on signal speed and shower separation
 - Subdivide calorimeter

For 1.6 GeV cut, resolution hardly matters for best δω/ω

Double Shot (rear view)

Pileup for g-2 is special

- 2 low-energy electrons can look like 1 (good) high-energy electron
- Avg. spin direction of Blue ahead of Red
- Probability of these has e^{-2t/τ} dependence

♦ → early to late change systematic

essential Muon Spin Direction Calorimeter

- Waveform digitization: essential
- · Fast pulses: essential
- Controllable tails: essential

We can separate down to about 5 ns

Exaggerated rotation

Choice of Calorimeter

We considered these three materials:

All are dense and non-magnetic and relatively "fast"

Material	PbF2	PbWO4 (undoped)	W / SciFi
Туре	Cerenkov crystal	Cerenkov & Scintillation crystal	Sampling / scintillating fibers
Radiation length	0.93 cm	0.89 cm	0.69 cm
Moliere radius	1.8 cm (Cerenkov)	2.0 cm	1.73 cm
Typical resolution @ 2 GeV	< 3 % /	2 %	10 %

A tungsten/scintillating fiber electromagnetic calorimeter prototype for a high-rate muon (g-2) experiment

R. McNabb^a, J. Blackburn^a, J.D. Crnkovic^a, D.W. Hertzog^{a,*}, B. Kiburg^a, J. Kunkle^a, E. Thorsland^a, D.M. Webber^a, K.R. Lynch^b

^a Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 6180

Our first PbF₂ prototype array was tested with various wrappings, couplings, and readout at FNAL

Pulse Shapes vs. Wrappings

Ocean Optics spectrometer used to measure transmission vs. wavelength

Moliere Radius / Energy Sharing GEANT Simulation vs Measurement in Test Beam

Binned beam impact points compared to continuous simulation

A 6 x 9 Array will be built for each of the 24 Calorimeter stations. Typical shower sizes and cluster separations, but TIMING (two-pulse resolution will be critical)

Relatively Easy with a good algorithm

Some pileup events will not resolve by space

Silicon Photo-Multipliers

MPPCs

G-APDs

• • •

vs. PMTs

Comparing SiPMs to fast PMTs. Can the former replace the latter?

Hamamatsu R9800 PMT

Hamamatsu 16 channel SiPM

... and electronics for SiPM

Why we'd like to use SiPMs if we can

Mount on board; NO lightguides

- Non-magnetic
- Lower cost

Crystal: SiPM size comparison. ~ 4:1 Is it enough?

Our (working) Design Choice is this 12 x 12 mm2 16-channel SiPM from Hamamatsu

(Geiger mode avalanche photodiodes)

Because the larger SiPMs are still small compared to the crystal, light yield is a big issue

Bench Tests with Cosmic Rays and PMTs

Convert to photon yield and to SiPM expectation (will return to this again for SiPM)

 Low light level calibration with laser turned down

- Energy loss $\Delta E = 26.8 32.17 [MeV]$
- Photons produced $\frac{d^2N}{dEdx} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 \frac{1}{\beta^2 n^2(\lambda)}\right) N_{\gamma,tot} = 1030-1240.$
 - •Black Wrapping: ~24 ± 4
 - •White Wrapping: ~55 ± 6

This will lead to an important test at SLAC

Many vendors ...

We are also evaluating SiPMs from all major vendors

SiPMs Require Custom Summing Board that

affect the pulse shape					
board	chann	•			
A	2x2	4 individually readout voltage amplifiers with trim pots for individual bias voltage change			

no trim pots, voltage op amp with small load resistor.

all channels are summed first via a 2.5 Ohm load resistor

First 16 ch board. 1 amp per 2 channels

and then amplified in two stages

Amp for each channel

Transimpedance amp (was ringing)

4x4 Individual shunt resistors and passive adding 4x4 network with 2 gain stages; voltage amplifiter

F

E

В

2x2

2x2

4x4

4x4

G board modified for current amplifier; 4x4This board has passed many requirements tests

Gain is highly sensitive to Over-voltage Bias or Temperature

Essentially the same effect.

The breakdown voltage of the diode is temperature dependent

Gain with and without fan

Evaluation tools: Test Setup at UW

→ 1:12 E821 Optical Splitter

USB-driven Neutral Density Filter wheel for remote intensity variation

DRS 5 GSPS, 4-ch Digitizer

407 nm PicoQuant Laser

DRS4, PSI bandwidth of 950 MHz sampling frequency from 0.7 to 5 GSPS

SiPMs require custom-made amplifiers and summing circuits. Pulse shapes affected (significant ongoing effort to preserve intrinsic pulse shape

Worse with 16 channels summed.

3.763n

3.550n

- Must minimize inductances and capacitances
- Must get lower average Quench Resistors on arrays

419.40ns 208.40ns

△211.00ns

22 Jun 16:52:

57.49p

5.094n

2-pulse resolution

An example lab / simulation study

Two – pulse separation studies using real pulse shape templates and Monte Carlo

A realistic example with $\Delta t = 6$ ns

Actual SiPM waveforms at 500 MHz sampling

SiPM pulses are resolved for $\Delta t \sim 3.5$ ns

In the lab

- •407nm, ~100 ps long laser pulse split into two channels: E1 & E2
- •E2 delayed by optical fibers [0 60 ns]
- •Each pulse digitized at 2.7 GS/s, independently and together
- •SiPM coupled to PbF2 crystal to ensure uniform illumination

For two events close in time in the same SiPM, how is the gain of the second pulse affected?

Map the response of the second pulse so it can be corrected if needed.

Function: $G2(E_1, E_2, \Delta t)$

- G2 is the gain and time of the second pulse
- *E_i* is the energy of the *ith* pulse
- **1** is the time separation

Pulse fitter model: single pulse

- Gaussian for laser pulse
- Exponential rise time for avalanche discharge
- Exponential decay time for SiPM recovery

Pulse fitter model: pileup

- Same laser pulse parameters
- Same rise and decay times
- Time delay

Energy and Time Resolution of Pulses

- Typical data set: 4000 fit results for energy and time of second pulse
- Time and energy resolution are very good even for low gain

Pulse recovery depends on pulse size:

(missing amplitude is proportional to the amplitude)

Drop in 2^{nd} pulse vs. time for 3 different 2^{nd} pulse energies vs time Δt

Preliminary Results from SLAC test beam

5 Hz, pure e⁻ in range 2.5 – 4 GeV (for us)

Prepared by Jarek Kaspar

An array of 9 crystals

5 older 3x3 cm² and 4 newer 2.5x2.5 cm² 5 PMTs and 4 SiPMs

Add SiPMs

Stabilized temperature

dried air nozzle to SiPMs 45 CFPH, 0 deg C

Temperature sensor

ADT7420 0.25 deg C accurate 0.0078 deg C resolution 3x3 mm, I2C (LabJack) (batteries included) 5 inside,1 ambient

Bias control

BK precision 9124 0—73 V 1 mV step floating on 5 V USB controlled

Laser Calibration

number of photons equivalent to 0.5 — 4.0 GeV

Using the mean and standard deviation of distribution

- Assume all variance comes from Gaussian photostatistics
- Relation: $\mu = \sigma^2 \Rightarrow \sigma_{mean} = \sqrt{\frac{\mu}{N}}$
- Calibrate as a linear fit of

$$\mu \ vs. \ \frac{\mu^2}{\sigma_{\mu}^2} (=N_{pe})$$

 Gives a lower limit since not all noise is photostatistics

Calibrating the Gain in terms of Fired Pixels vs pulse amplitude (or area)

$$N_{pe} = \frac{M^2}{\sigma_{pe}^2} \qquad \qquad aM = \frac{M^2}{\sigma_{obs}^2 - \sigma_{noise}^2} \qquad \qquad a(\sigma_{obs}^2 - \sigma_{noise}^2) = M$$

Note: In principle, one can also use the pixel saturation of the SiPM

- As $N_{pe} \rightarrow N_{pixels}$, the probability of multiple photons hitting a single pixel is non-negligible
- The relation is given by:

$$N_{pixels,fired} = N_{pixels} \left(1 - \exp(-N_{pe}/N_{pixels})\right)$$

SiPM from UW Lab

- Adjusted laser N_{photons} with optical neutral density filters
- Each line at different gain (voltage)

SLAC beam

Beam exiting vacuum chamber is small Beam hitting detector (Al windows, 6 m air) grows

SLAC beam

single particle Poisson distribution 2.5, 3, 3.5, 4 GeV

Intrinsic Pulses

pole zero correction, laser shot, 2 GeV, ~2000 pe

No pole zero correction, 2 GeV, ~2000 pe

First light

Calibrate each block one by one

- First find Calibration constants for each detector at their center
- Cut on 1 electron and avoid events that smear into other blocks

2.725e+04

Position Scan

Position Scan

Our laser calibrations are now working well and we find the "expected" light yield from our detectors (this has been a big worry)

Corresponds to a light yield above 1000 pe/GeV (as we had hoped)

Energy Linearity

It is a calorimeter.

Energy sum for array

Grand sum, using combination of Monte Carlo study of shower containment and calibration constants

Runs at 10 deg.

Conclusions

PbF2 works as calorimeter

Good energy resolution

(Good timing resolution)

SiPMs work for readout

Summary

- High-intensity experiments have complex implications on detector design
 - Optimization is multi-faceted
- PbF2 Cherenkov crystals are fast and dense
- SiPMs are wave of future
 - Can live in high magnetic fields
 - Are quite cost effective compared to PMTs
 - But have lots of growing pains to resolve
- Situation evolving fast

Prompt Flash Studies

E821 Delayed Flash Shifted Baseline during Fill Prompt Flash was avoided by blanking off PMT gains

Gating for 5 to 15 μs; Recovery in 1 μs

Baseline shift caused by thermal neutron capture in scintillating fibers

Question: Can we survive the Prompt Flash without blanking circuits?

Estimate: 90% of ~50,000 m+ don't store → If 10% hit some unlucky crystal, that will more than saturate all pixels of the SiPM. How fast can we recover?

Setup: Prompt Flash → LED Decay Positron → Laser

Logic: Compare laser with and without preceding LED "FLASH" Only Laser **Gate Delay** Laser Generator Trigger **Event** Trigger ≈100Hz **LFD** Trigger Adjust trigger width M 200ns 1.25GS/s IT 40.0ps/pt for size of flash in pixels LED + Laser **Delay controls** SiPM-v2: Expected Photons From LED timing between 60000 **LED** and Laser f(x) = 58,226.31x - 535,592.6450000 ≈ 1 µs at right Expected detected pe from 40000 30000 20000 1 μs **SiPM** 10000 Response 9.6 9.7 9.8 9.9 10 10.1 10.2 Flash width (ns)

First attempt: Miserable failure (ugh)

Modifications to SiPM Board Schematic

Current Results are Promising

(will be repeated for next generation boards)

Electronics

NIM trigger logic

- > trigger on beam or "on light"
- > scint. paddles online
- > beam finder offline (SiPM/scint)
- > remote switch/delay control

SiPMs

> pole zero network (opt)

PMTs

> T-bridge (impedance match, opt)

Digitizers

- > SiPMs, PMTs
- > scint. paddles, beam finders

Scintillator paddles

2 paddles in coincidence trigger "on light" data quality flag

moveable beam finder (remote)

Digitizers

Struck SIS 3350

- > Pipelined Flash ADC
- > 500 MSps, 12 bit, 4 ch

PSI DRS4

- > Capacitor Array (1024, 5GHz, 8ch)
- > then ADC (33 MSps, 16bit)

Light Yield

1.0 pe/MeV

